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Abstract — In this paper, we propose a numerical
algorithm to reconstruct the complex permittivity profile of
unknown scatterers by using the FDTD technique and the
design sensitivity analysis (DSA). By [ntroducing the DSA
and the adjoint variable methed, we can calculate the
derivatives of error funmction with respect to complex
permittivity variables, and reduce the computational costs.
Proposed method is validated by applying to the
reconstruction of unknown 2-D scatterers which are
illuminated by TM® with a gaussian pulsed plane wave,

I. INTRODUCTION

The development of methods for the reconstruction of
the unknown complex permittivity distribution of
scatterers from the measured scattered field has been
much attracted over the last years because it is considered
to be fundamental and essential in microwave imaging
applications. The reconstruction of complex permittivity
profile in inhomogeneous structures can be considered as
an optimization problem to minimize the difference
between the measured ficld data and the calculated ones
by controlling the complex diclectric permittivity in test
domain. Such a difference is defined as an error function
to be minimized. However, the inverse scattering
problems are known to have nonlinear and ill-posed
properties due to the lack of the measured information and
multi-scattering effects between the objects [1]. In order
to effectively reconstruct the unknown profiles, the first
order method wsing the gradient information and the
iterative technique has been preferred,

Recently an optimization method based on FDTD and
the design sensitivity analysis (DSA) in frequency domain
has been proposed [2][3]. The DSA concerns the
relationship between the design goal (or the objective
function) and design variables. That is, the DSA is to
evaluate the derivative of cbjective function with respect
to the design variables,

In this paper, we propose a new reconstruction.

algorithm that uses the derivatives information calculated
by the FDTD technique and DSA. In order to effectively
calculate the derivative information of error function, we
adopted the adjoint variable method [4]. The proposed
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method based on the adjoint variable method needs twice
the CPU time to solve the forward problem using FDTD
as many as the number of complex permittivity variables
per citeration. And by introducing the topology
optimization based on normalized material density, we can
improve the characteristics of convergence.

In order to realize a plane wave source, we introduce the
TF/SF technique [5]. To reduce the computational domain,
Berenger’s PML technique is also adopted.

II. FORMULATION

A. Problem Definition

To reconstruct the unknown complex permittivity
distribution of a scatterer in the objective domain, it is
required to minimize the difference between the calculated
scattered fields and the measured ones. To evaluate such a
difference, we define an error or objective function as

F< %iij“ [ (&2 —E;,(tjij)zdt )

where Ny is the number of transmitters, Nz is the number
of receivers and T is the fixed final time. E,’ is the
measured scattered field and E.° is the calculated one at
measuring point.

Applying the first variation to (1) with respect to
inversion variable vector {p}, one can obtain the
derivatives of error function as

1542 6, %,
d{p} 295 a{P}

3{P} oL,

where GU =(E:|y -E;ly)z

In general, the scattered field variabie E has an
implicit relation with the variables {p} and dF/d{p} can be
obtained using an indirect method. To reduce the
computing time, we introduce the adjoint variable method

{4].
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B. FETD and Design Sensitivity Analysis

From the Maxwell’s equations, one can derive the 2-D
TM? scalar wave equation as following

2
g Oe Oe aJ
Vie, —L—F w ot g ~~t (3
c o oo Ty @
where & denotes relative permittivity, o means

conductivity and co means velocity of light in free space,
Applying the nodal element and Galerkin’s formula to (3),
one can discretize (3) and construct the matrix equation as

[Kl{e,} +[M1{&,} +[B1{é,} = {0} @)
subject to
€,(0)=0, ¢(0)=0 (5)

where dot denotes the time derivative. Matrices /K], fM],
[B] and {Q} can be represented as

= L VN, VN dQ° (6a) .
e __ l r e
M= = {5V, N,d0 (6b)
B =, L o°N,N,dQ* (6c)
QO =—pn, L N, Jdor (6d)

Using the adjoint variable A, one can derive the adjoint
equation of (3) as following

[M]{i}—[B]{i}+[K1{A}={jf,} ™

subjected to
At )= ilr;)=0 ®

Equation (8) is terminal conditions on A, for solving (7).
To deal with the terminal conditions, the backward time

scheme, 7=T7,—¢ is introduced. Then (7) can be

converted into the initial-value problem. Using (2) and (7),

one can transform the design sensitivity (2) into

Ny Ny

o ZZ f i ——-R(t Jo)dt (9a)

N, N, a
= ZZ f A ——R(t,,,0)dt (9b)

where

R(,,,0) = {Q)~IMZ,} - [BI{e,}-[K]{E.} (10)

The notation ~ indicates that argument is held constant
for the derivative process with respect to & and o Note
that /M] is the only matrix dependent on &, /BJ is only
the matrix dependent on o.

C. FDTD and Design Sensitivity Analysis

From the uniqueness theorem of soluticn, one can
transform (7) in to the Maxwellian coupled curl equations
as following .

Y A%
== 11
(5% ot (1a)
9A%  oA™
= 11
dx ot (11b)
H, Hx D,
0™ _0A" _ ., =Q€-__+J: (11ic)
x oy
subject to
H
A= (1, )= 2, )= 2" (1, )=0 (12)
And these adjoint variable vectors satisfy the

constitutive relation as the electromagnetic field vectors,
That is,

AP =gdf, B = pi” (13)

In (N.J : is a pseudo electric current density and can
be obtained from the relation of

8G
EAN

= u, -L.. NJXdQ (14)

For a specific point in design domain, J: can be
represented as a point current source following

T, ) =TS (x~%,,y—¥,) (15)

By inserting (15) into (£4) and assuming that the grid is
a square quadrilateral, the right-hand side of (14) is

po [, Nl ld2= o }A (16)
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where A.is the area of grid. Therefore, Jf can be

written as
1 0G(t
T =—— I—(ldt' (17
aqu aE'z
D. Topology Optimization
In order to smoothly reconstruct the complex

permittivity profiles, topology optimization based on the
normalized material density is introduced [6]. In the
topology optimization, the test domain to be reconstructed
is divided into small grids and the materjal composition of
each grid is taken as design variable. By controlling the
material composition of each grid, the unknown object
relative permittivity and sigma can be reconstructed. The
key concept of this method is how to treat the material
composition in order to estimate the objective function,
and reconstruct the final object shape. There are two
methods to treat the material composition, the
homogenization method and density method.
Homogenization method provided solid material physical
and mathematical basis for the calculation of the material
properties of the composite, or intermediate materials. On
the other hand, the density method takes the material
density of each grid as the design variable and it does not
concern the microstructure but the results only. In this
paper, the density method is preferred.

To apply the density method to the reconstruction
scheme, the normalized density vector of material {p} is
introduced, each of element p, takes the value between 0
and 1. Using the normalized density vector {p}, one can
represent the complex permittivity as

e(p)=(c,-1)p' +1 ,0<p sl

alp;)=0,p;

where h is the exponent which defines the relationship
between material property and normalized material
density. The normalized material density p is defined at
each grid in test domain. When p, is 0, it means the
permittivity is that of air, and when p; is 1. it means that of
solid material. The value of p; between 0 and 1
corresponds to the intermediate material property.
Inserting (18) into (9), one can rewrite the derivative error
function F with respect to the normalized material density

pas

OF SR 0 .. -
P "2);[ Py a—pl-(- (MIE e, ~1)p*dr (199)

(18a)

,0<p, <1 (18b)

oF N & iy O - pel
—=h —|-(B t 196
X[ 7 st 0%

Then, (11a)-(11c) can be also solved by using FDTD
technique with terminal conditions (12). And introducing
the electric fields and adjoint variables solved by using
FDTD, one can calculate the design sensitivity also. As an
optimization algorithm, the steepest descent method is
used because of its simplicity.
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Fig. 1. Design configuration. The TM" plane wave is incident
at direction and at each Rx Ant. position E, field is measured.

I11. NUMERICAL EXAMPLE

In order to validate the proposed method, our method is
applied to the 2-D reconstruction of dielectric object
illuminated by the TM* wave with a gaussian pulse, The
analysis model is shown in Fig. 1. In order to realize a
plane wave source, the total-field/scattered-field scheme
was adopted. The incident wave is a gaussian pulse
modulated by a sine function with center frequency of
5GHz. The number of transmitters is 16 and the number
of receivers is 16. The measurement points are located in
the scattered-field region around the central point of test
domain. The number of grids in test domain is 60 by 60.
Fig. 2(a) and 2(b) show the original & and ¢ of presented
modet. The medium is composed of two concentric square
cylinders. The inner cylinder with & =2.5, o =0.2 is
surrounded by a cylinder with & =2.0, o =0.1 and the
other region is filled with air. Fig. 2(c) and 2(d) show the
reconstructed profiles which are obtained after 100
iterations,
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IV. CONCLUSION

In this paper, we developed a numerical two-
dimensional reconstruction algorithm for microwave
imaging in TM® case. The algorithm utilizes the FDTD,
design sensitivity analysis and topology optimization
technique. The method has been applied to the scattering
objects that are illuminated by the pulse type wave source,
The objects are successfully recomstructed in both of
dielectric constant and electtic conductivity.
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